Correlations between immunologic alterations and metal exposure within the Navajo Birth Cohort Study

Presented by Jennifer Ong and Shea McClain

Community Environmental Health Program
Department of Pharmaceutical Sciences
UNM Health Science Center College of Pharmacy

Funding:
- Navajo Birth Cohort Study (supports collection of Navajo Nation samples and biomonitoring data) CDC/ATSDR 5 U01 TS 000135. Content of presentation is solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention or the Department of Health and Human Services.
- NIH P50 ES026102 Environmental Health Equity Center supported the phenotypic studies presented here.
WITH ACKNOWLEDGEMENT AND THANKS TO OUR TEAM!

DiNEH, NBCS, & NBCS/EHCO Teams

UNM-HSC
Johnnye Lewis, Ph.D.
David Begay, Ph.D.
Curtis Miller, Ph.D.
Eszer Erdei, Ph.D.
Courtney Burnette, Ph.D.
Laurie Hudson, Ph.D.
Debra MacKenzie, Ph.D.
Lauren Hund, Ph.D.
Karen Cooper, Ph.D.
Matt Campen, Ph.D.
Jim Liu, Ph.D.
Chris Vining, MS, SLP
Bekky Smith
Carla Chavez
Miranda Cajero
Bernadette Pacheco
Jennifer Ong
Malcolm Benally
CJ Laselute
Malcolm Benally
Elena O’Donald, Ph.D.
Molly Harmon, Ph.D.
Joseph Hoover, Ph.D.
Vanessa De La Rosa, Ph.D.
Erica Dashner, Ph.D.
Sara Nozadi, Ph.D.
Tim Ozechowski, Ph.D.
Ji-Hyun Lee, Ph.D.
Li Luo, Ph.D.
Rufei Du, Ph.D.
Shea McClain
Mallery Quetawki (artist-in-residence)
Priscilla Begay
Benita Brown
Shasity Tsosie

SRIC
Chris Shuey, MPH
Lynda Laslloo
Sandy Ramone
Teddy Nez
Maria Welch
Monique Tsosie

CDC/ATSDR/DLS/IRAT
Angela Ragin-Wilson, Ph.D.
Candis Hunter, MSPH
Elizabeth Irvin-Barnwell, Ph.D.
Kathleen Caldwell, Ph.D.
Cynthia Weekfall

NAIHS
Doug Peter, M.D.
Johnna Rogers, RN
Ursula Knoki-Wilson, CNM, MSN
Charlotte Swindal, CNM, RN
Diedre Sam
Marcia Tapaha
Francine Begay
Myra Francisco
LeShelly Crank

NNEPA
Donald Benn, Ph.D.
Stephen Etsitty
Yolanda Barney
Freida White
Chandra Manandhar
Vivian Craig
Eugenia Quintana

USEPA – Region 9
Clancy Tenley
Linda Reeves
Harry Allen
Rich Bauer

PL-638 HOSPITALS
Delila Begay
Abigail Sanders

UCSF
Bennett Leventhal, MD
Young Shin Kim, MD, Ph.D.
Somer Bishop, Ph.D.

CONSULTANTS
Perry Charley
Adrienne Ettinger, Ph.D.

Navajo Nation
Mae-Gilene Begay
Anna Rondon
Qutarah Anderson
Roxanne Thompson
Melissa Samuel
Doris Tsinnijinnie
Josey Watson
Nikki Begay
Anita Muneta

Our funders:
• NIEHS (16 yrs)
• CDC/ATSDR (5 yrs)
• USEPA Region 9 Superfund Emergency Response (4yrs)
• NIMHHD (4 yrs)
• NNEPA (1 yr)
• NiAAA (4 yrs)
• NIGMS K12 (3 yrs)
• UNM-COP
• UNM-CTSC
• NSF-EPSCOR
• EPA
• NIH-OD

And thank you to the many others who have contributed and supported this work!

The people of the Navajo Nation:
• > 2000 Navajo families
• Many supporting chapters
• HEHSC, Tribal and Agency Councils, Executive Branch, NNEPA, GIB
• NAIHS & PL-638 hospital laboratory staff, leadership, and health boards

CONSULTANTS
Perry Charley
Adrienne Ettinger, Ph.D.

Navajo Nation
Mae-Gilene Begay
Anna Rondon
Qutarah Anderson
Roxanne Thompson
Melissa Samuel
Doris Tsinnijinnie
Josey Watson
Nikki Begay
Anita Muneta

Our funders:
• NIEHS (16 yrs)
• CDC/ATSDR (5 yrs)
• USEPA Region 9 Superfund Emergency Response (4yrs)
• NIMHHD (4 yrs)
• NNEPA (1 yr)
• NiAAA (4 yrs)
• NIGMS K12 (3 yrs)
• UNM-COP
• UNM-CTSC
• NSF-EPSCOR
• EPA
• NIH-OD

• Research reported here was supported by the National Institute Of Environmental Health Sciences of the National Institutes of Health under Award Number P42ES025589. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

• DiNEH and NBCS Research is reviewed and monitored by Navajo Nation Human Research Review Board

CONSULTANTS
Perry Charley
Adrienne Ettinger, Ph.D.

Navajo Nation
Mae-Gilene Begay
Anna Rondon
Qutarah Anderson
Roxanne Thompson
Melissa Samuel
Doris Tsinnijinnie
Josey Watson
Nikki Begay
Anita Muneta

Our funders:
• NIEHS (16 yrs)
• CDC/ATSDR (5 yrs)
• USEPA Region 9 Superfund Emergency Response (4yrs)
• NIMHHD (4 yrs)
• NNEPA (1 yr)
• NiAAA (4 yrs)
• NIGMS K12 (3 yrs)
• UNM-COP
• UNM-CTSC
• NSF-EPSCOR
• EPA
• NIH-OD

• Research reported here was supported by the National Institute Of Environmental Health Sciences of the National Institutes of Health under Award Number P42ES025589. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

• DiNEH and NBCS Research is reviewed and monitored by Navajo Nation Human Research Review Board

CONSULTANTS
Perry Charley
Adrienne Ettinger, Ph.D.

Navajo Nation
Mae-Gilene Begay
Anna Rondon
Qutarah Anderson
Roxanne Thompson
Melissa Samuel
Doris Tsinnijinnie
Josey Watson
Nikki Begay
Anita Muneta

Our funders:
• NIEHS (16 yrs)
• CDC/ATSDR (5 yrs)
• USEPA Region 9 Superfund Emergency Response (4yrs)
• NIMHHD (4 yrs)
• NNEPA (1 yr)
• NiAAA (4 yrs)
• NIGMS K12 (3 yrs)
• UNM-COP
• UNM-CTSC
• NSF-EPSCOR
• EPA
• NIH-OD

• Research reported here was supported by the National Institute Of Environmental Health Sciences of the National Institutes of Health under Award Number P42ES025589. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

• DiNEH and NBCS Research is reviewed and monitored by Navajo Nation Human Research Review Board
Exposure to uranium on Navajo

521 abandoned U mines; >1100 of 10,400 waste sites identified in western US
Multiple metals and metalloids
Multiple pathways:
Consumption of local water and crops,
Contact with contaminated soil and dust
Inhalation of metals released from combustion for home heating
Drinking water

Map of arsenic (A) and uranium (B) concentrations in Navajo Nation water sources and their proximity to mining areas

15% > MCL
13% > MCL
Presence of environmental metals

Dearth of toxicity knowledge

Unique exposure pathways

Disparities in care

Adverse health effects/health disparities

Immune system?
What is “immune system”? Complex network of cells and organs that work together to protect the body from infection

1) **Thymus**: Formation of T cells
2) **Tonsils/Adenoids**: Distinguish invaders for destruction
3) **Spleen**: Filters blood and distributes T and B cells
4) **Lymph Glands**: Storage and white blood cell formation
5) **Bone Marrow**: B cells are produced in bone marrow
When infections are present, the cells of the immune system work together to help eradicate the pathogen (such as bacteria or viruses).

Introducing some of the key players--

- **CD4 or “helper” cell**
 - Facilitates the activity of other immune cells

- **CD8 or “killer” cell**
 - Kills infected cells after activation by “helpers”

- **B cell**
 - Makes antibodies
 - Antibodies are produced after infection or vaccination and provide long-term protection

- **NK cells**
 - Kill cells that are infected or foreign (i.e. do not belong).
Significance
Toxicity to immune system can lead to adverse health outcomes

Environmental metal exposure??

Immune alteration/dysregulation

Immune Activation

Chronic inflammation

Autoimmune disease

Cancer

Immune Suppression

Chronic infection
Hypothesis- Chronic low-level environmental exposure to metal mixtures from contributes to immune system dysregulation.

To begin to address this complex question-we can measure immune cell populations to see if there are changes in the numbers of the different types of cells
Experimental Approach

- Measure lymphocyte populations from blood samples from NBCS mothers.

- Perform preliminary statistical analysis to determine if associations are seen between immune cell populations and the following metals as detected in the blood or urine from participants.

 - Metals: arsenic, cadmium, mercury, manganese, uranium and zinc
 - Statistical approaches: Spearman correlations and multivariable regression analysis
How do we measure different cell types?
Changes in cell populations are observed in association with metal exposures

<table>
<thead>
<tr>
<th>Cell population affected</th>
<th>Metal</th>
<th>Statistical Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of immune cells</td>
<td>Uranium, arsenic, manganese</td>
<td>Multivariable, Spearman (Mn)</td>
</tr>
<tr>
<td>Total # of T cells</td>
<td>Uranium, arsenic, cadmium</td>
<td>Multivariable</td>
</tr>
<tr>
<td># of activated CD4 cells (HELPER cells)</td>
<td>Cadmium</td>
<td>Multivariable</td>
</tr>
<tr>
<td># of CD8 cells (KILLER cells)</td>
<td>Cadmium</td>
<td>Multivariable, Spearman</td>
</tr>
<tr>
<td># of activated B cells (ANTIBODY Producing Cells)</td>
<td>Manganese</td>
<td>Multivariable, Spearman</td>
</tr>
<tr>
<td># of NK cells (NATURAL KILLER cells)</td>
<td>Uranium, arsenic, manganese, cadmium</td>
<td>Multivariable, Spearman (Mn)</td>
</tr>
</tbody>
</table>
Conclusions

• Several associations are seen between concentrations of metals and increases or decreases in immune cell populations in the blood of participants in the NBCS.

Importance

• Changes in populations of immune cells can lead to changes in immune functions.
• Immune dysregulation can lead to increased infections, autoimmune responses, and cancer.
Next Steps

• Examine immune cell data along with other immune system markers
• Consider the effects of metal mixtures on these populations
• Incorporate demographics, dust, and survey data into statistical modeling to see if there are significant differences in immune cell populations based on this information