Wood stove interventions and child respiratory infections in rural communities

University of New Mexico (Justina Yazzie and Josey Watson)
University of Montana (Tony Ward)

October 19, 2017
Wood stoves

Across the US, ~11 million homes report the use of wood as either a primary or secondary heating fuel.

Over 80% of these woodstoves are old and inefficient.
PM$_{2.5}$ health effects

- PM$_{2.5}$ exposure is associated with many adverse health outcomes, including a greater than three-fold increased risk of lower respiratory tract infections (LRTIs) in children.

- Acute LRTIs account for more than 27% of all hospitalizations among US children <5 years of age.

- Poor indoor air quality may be related to risk of lower respiratory tract infections (LRTI) among children.
Indoor wood smoke exposures
Indoor residential PM$_{2.5}$ sampling programs

- Northern Rockies / Fairbanks, AK intervention study (97 homes).
- Avg (sd) indoor PM$_{2.5}$ across all homes was 34.8 ± 56.5 µg/m3.

- Indoor PM$_{2.5}$ concentrations often exceed health based standards such as WHO and EPA NAAQS.
Residential PM$_{2.5}$ Program
PM$_{2.5}$ Mass - Home 4A

Before Changeout

Start Sampling:
10/25/06 @ 14:00

End Sampling:
10/26/06 @ 14:00

Avg = 131.8 μg/m3
Interventions – indoor air

Our team has evaluated:

• wood stove changeouts
• use of filtration units
Wood stove changeout

Old stove
40-60 g smoke/hr

EPA-certified stove
2-5 g smoke/hr
Wood Stove Changeouts

- Promoted by EPA to reduce wood smoke.
- Expensive (~$1500 - $4500).
- Effective in reducing ambient PM$_{2.5}$.
- Results can be variable for indoor air.
- Learning curve.
Indoor intervention
- air filtration units -

Monitor compliance (KiloWatt meter).
Filtration units

- ~60% improvement in air quality.
- Expenses: costs of the unit (~$200), yearly filter replacement (~$100), and energy usage (~$100-$200/year).
- Noise, filter replacement, etc.
- Compliance issues.
What about education on best-burn practices?

• Can education be used as an effective, economical, and sustainable intervention to improve indoor air quality and health effects?

• Education coupled with the use of inexpensive tools.
Education intervention

- Videos on Best Burn Practices.
- Training on simple tools:
 - moisture meter
 - stove thermometer
 - firestarter
“KidsAIR”

- Wood Stove Interventions and Child Respiratory Infections in Rural Communities.

- Curtis Noonan and Tony Ward (co-PIs).

- 5-year R01 funded by the NIEHS.

- Project Period: 06/19/2014 – 03/31/2019.

- Study areas include western MT, Alaska Native Villages (Univ Alaska Fairbanks, CANHR), and the Navajo Reservation (Univ New Mexico).
Overview of KidsAir

• Hypothesis: a low-cost, educational intervention targeting indoor wood smoke (PM$_{2.5}$) exposures will be an efficacious, sustainable strategy for reducing children’s risk of LRTI in underserved Native and rural communities.

• Interventions:
 • Household-level strategies, including 1) filtration units, 2) placebo filtration, and 3) education (randomized trial).

• Participants 324 homes with an anticipated 486 children <5 years (108 homes at Navajo Nation, 162 children in total).
Health Outcomes

• The primary health outcome will be occurrence of LRTI among children.

• Identification of LRTI episodes will occur through a three step process:
 • (1) parent reporting of symptoms
 • (2) Collection of confirmatory and severity data
 • (3) physician classification of case status (medical records).
Health Measures

• Identification of symptoms consistent with LRTI (wheeze and cough, fever/temperature, elevated respiratory rate, saturated oxygen, and evaluate the child for presence of chest indrawing (retractions)).

• Parents asked to contact their Community Coordinator when such symptoms are present in household children <five years.

• Home visits will occur within 48 hours of parent notification of signs and symptoms of LRTI.

• Continue to track this child’s symptoms.
Exposure Outcomes

• Indoor PM2.5 Monitoring. A stationary DustTrak (TSI) is used to continuously measure PM2.5 mass with 60-second time intervals for 6 day periods.

• Stove temperature. We monitor stove use throughout the winter using a LogTag.
• Activity logs.
Results

- Enrolled through winter three of grant:
 - 49 homes, 74 kids.

- Target Winter 4 (2017/18 winter)
 - 33 homes, 50 kids.

- Data analysis is in progress.
Recruiting and other challenges
Conclusions

- Residential wood combustion is a large source of PM$_{2.5}$ within the indoor environment during the winter months.

- Education on best-burn practices shows promise in reducing ambient and indoor air pollution, but needs to be comprehensively evaluated.

- **Benefits of research:** A low-cost, educational intervention targeting indoor wood smoke PM$_{2.5}$ exposures will be sustainable, and can reduce children’s risk of LRTI in underserved Native and rural communities.
Acknowledgements

Funding
• NIEHS (1R01ES022649, Program Officer Symma Finn)
 • UM (Curtis Noonan, Annie Belcourt, Erin Semmens, Emily Weiler, Carolyn Hester, Desirae Ware, Dr. Paul Smith)
 • UAF (Bert Boyer and Scarlett Hopkins)
 • UNM (Johnnye Lewis, Becky Smith, Eszter Erdei)

Thank you.